

HYPOLAETIN 8-GLUCOSIDE FROM *SIDERITIS LEUCANTHA*

FRANCISCO TOMAS, BERNARD VOIRIN,* FRANCISCO A. T. BARBERAN and PHILIPPE LEBRETON*

Centro de Edafología y Biología Aplicada del Segura (C.S.I.C.), Apartado 195, Murcia 30003, Spain; *Département de Biologie Végétale, Université C. Bernard Lyon I, 43 Boulevard du 11 Novembre 1918, F 69622, Villeurbanne Cedex, France

(Revised received 22 November 1984)

Key Word Index—*Sideritis leucantha*; Labiate; 5,7,8,3',4'-pentahydroxy-flavone 8- β -D-glucoside; nuclear methylation.

Abstract—A new naturally occurring hypolaetin 8- β -D-glucoside has been isolated and identified from *Sideritis leucantha*. The natural compound suffered nuclear methylation during derivatization.

Aerial parts of *Sideritis* species are used in Spanish folk medicine for treating acute and chronic inflammation and a flavonoid has been isolated as being responsible for this activity [1]. In continuation of our work on the flavonoids of *Sideritis* [2-4], we have now isolated and identified from *Sideritis leucantha* Cav. a new naturally occurring hypolaetin 8- β -D-glucoside and permethylation with methyl iodide [5] yielded a major C-6 methylated product.

The UV values of the glucoside in the presence of classical reagents [6-8] indicated the existence of free hydroxyls at the 5-, 7-, 3'- and 4'-positions as well as the presence of one supplementary substituent on the A-ring which, by comparison with data obtained for onopordin [8], may be located at C-8. This was confirmed after enzymic hydrolysis where, besides glucose, the aglycone so obtained showed the same chromatographic and UV characteristics as hypolaetin [8, 9]. Moreover, the electron impact mass spectrum was also as expected. The $[M]^+$ at *m/z* 302 revealed five hydroxyl groups on the flavone nucleus, three on ring A and two on ring B, as deduced from the retro-Diels-Alder fragmentation ($[B_1]^+$, *m/z* 134; $[B_2]^+$ *m/z* 137 and $[A_1]^+$ *m/z* 168). Finally, isosinensetin was obtained by diazomethane methylation of the aglycone, verified by TLC with an authentic sample.

Permethylated by means of methyl iodide [5] is a usual derivatization technique in flavonoid glycoside mass spectral identification [10-12] and it is not usual to obtain C-methylated compounds as a major product. Nevertheless, it has been reported [13, 14] that nuclear methylation by methyl iodide in 5,7-dihydroxyflavones, occurs at C-6. So we have obtained a C-6 methylated compound during the permethylation process [5]. As suggested, the electron impact mass spectrum of the permethylated derivative, in which we found an $[M]^+$ (*m/z* 590), a $[A + H]^+$ (*m/z* 372) and the retro-Diels-Alder fragment $[A_1 - CO]^+$ (*m/z* 181), which were 14 mass units higher than expected, was in accord with the C-methyl introduced. This nuclear methylation was corroborated by the electron impact mass spectrum of the per deuteromethylated derivative, in which the peaks $[M]^+$ (*m/z* 617), $[A + H]^+$ (*m/z* 387) and $[A_1 - CO]^+$ (*m/z* 190) were 17 mass units higher than expected. Similar C-methylation has been described previously for flavanones [10]. The molecular ion at *m/z* 590 showed that the natural glycoside was a monoglucoside.

EXPERIMENTAL

Plant material and extraction This was carried out as described previously [4].

Isolation of the glycoside. From the *n*-BuOH extract, the glycoside was isolated by PC on Whatman No. 1 with 30% HOAc (*R_f* 0.25) and with BAW (4:1:5, upper phase) (*R_f* 0.55), and by prep. TLC on polyamide DC-6 (Macherey-Nagel) with H_2O -*n*-BuOH-HOAc-EtOAc (70:10:10:10) (*R_f* 0.33). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 349, 290 sh, 270, 258; $\lambda_{\text{MeOH} + \text{NaOMe}}$ nm: 411, 333 sh, 272; $\lambda_{\text{MeOH} + \text{AlCl}_3}$ nm: 432, 332 sh, 302 sh, 272; $\lambda_{\text{MeOH} + \text{AlCl}_3 + \text{HCl}}$ nm: 395 sh, 356, 298, 277, 262 sh; $\lambda_{\text{MeOH} + \text{NaOAc}}$ nm: 394, 323, 278; + NaOAc + $H_3\text{BO}_3$, 382, 277 sh, 265.

Permethylation. This was achieved by standard procedures [5]. Permethylated derivative TLC silica gel EtOAc (*R_f* 0.50), CHCl_3 -EtOAc- Me_2CO (5:4:1) (*R_f* 0.74). EIMS (probe) 70 eV, *m/z* (rel. int.): permethylated: 590 $[M]^+$ (3), 373 $[A + 2H]^+$ (13), 372 $[A + H]^+$ (58), 357 $[A + H - Me]^+$ (20), 328 $[A + H - \text{COME}]^+$ (3), 218 $[T_1]^+$ (13), 188 (3), 187 $[T_2]^+$ (24), 181 $[A_1 - CO]^+$ (10), 167 (3), 165 $[B_2]^+$ (5), 155 $[T_3]^+$ (21), 111 (98), 101 (100), perdeuteriomethylated: 617 $[M]^+$ (4), 388 $[A + 2H]^+$ (23), 387 $[A + H]^+$ (100), 386 $[A]^+$ (9), 371 (10), 369 $[A - \text{CD}_3]^+$ (36), 230 $[T_1]^+$ (13), 196 $[T_2]^+$ (19), 190 $[A_1 - CO]^+$ (8), 171 $[B_2]^+$ (2), 161 $[T_3]^+$ (141).

Enzyme hydrolysis This was achieved by β -glucosidase (Sigma) 1 hr, 30°, 0.1 M acetate buffer pH 4.6. The aglycone obtained showed the same chromatographic, UV and MS values as hypolaetin

Acidic hydrolysis. This was carried out with aq. 2 M HCl, 2 hr, 80°, yielding hypolaetin and 6-hydroxyflavone identified by MS and UV procedures

REFERENCES

1. Villar, A., Esplugues, J. and Alcaraz, M. J. (1982) *Arch. Farmacol. Toxicol.* **8**, 99.
2. Tomás, F., Ferreres, F. and Guirado, A. (1979) *Phytochemistry* **18**, 185.
3. Tomás, F. and Ferreres, F. (1980) *Phytochemistry* **19**, 2039.
4. Barberán, F. A. T., Tomás, F. and Ferreres, F. (1984) *Phytochemistry* **23**, 2112.
5. Brimacombe, J. S., Jones, B. D., Stacey, M. and Willard, J. J. (1966) *Carbohydr. Res.* **2**, 167.
6. Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) *The Systematic Identification of Flavonoids*. Springer, New York
7. Bacon, J. D., Mabry, T. J. and Mears, J. A. (1976) *Rev.*

Latinoam. Quim. 7, 83

8. Voirin, B. (1983) *Phytochemistry* 22, 2107.

9. Jay, M., Gonnet, J. E., Wollenweber, E. and Voirin, B. (1975) *Phytochemistry* 14, 1605.

10. Schmid, R. D. (1972) *Tetrahedron* 28, 3259.

11. Schmid, R. D., Varenne, P. and Paris, R. (1972) *Tetrahedron* 28, 5037

12. Wagner, H. and Seligmann, O. (1973) *Tetrahedron* 29, 3029

13. Seshadri, T. R. (1962) *The Chemistry of Flavonoid Compounds* (Geissman, T. A., ed.) p. 180 Pergamon Press, Oxford

14. Beirne, J. J., Carroll, N. M., O'Sullivan, W. I. and Woods, J. (1975) *Tetrahedron* 31, 265

Phytochemistry, Vol. 24, No. 7, pp. 1618-1619, 1985
Printed in Great Britain

0031-9422/85 \$3.00 + 0.00
© 1985 Pergamon Press Ltd

2,3-DIMETHYLNONACOSANE AND TROPANE ALKALOIDS FROM *HYOSCYAMUS ALBUS*

UMAR MAHMOOD, YOGENDRA N. SHUKLA and RAGHUNATH S. THAKUR

Central Institute of Medicinal and Aromatic Plants, Lucknow 226016, India

(Revised received 21 August 1984)

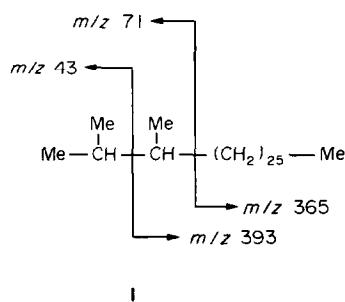
Key Word Index—*Hyoscyamus albus*; Solanaceae; hyoscyamine, hyoscine; 2,3-dimethylnonacosane.

Abstract—In addition to hyoscine and hyoscyamine, a new compound isolated from the leaves and stems of *Hyoscyamus albus* has been characterized as 2,3-dimethylnonacosane by spectral studies.

INTRODUCTION

Hyoscyamus albus is known to contain tropane alkaloids [1, 2] which have mydriatic, anti-spasmodic and anti-cholinergic properties. This plant has also been reported to possess chlorogenic acid [3]. A re-investigation of this plant has shown it to contain a new branched hydrocarbon and a total crude alkaloid content of *ca* 0.24%, of which *ca* 40% consists of hyoscyamine, *ca* 30% of hyoscine and *ca* 15% of two unidentified bases.

RESULTS AND DISCUSSION


Silica gel column chromatography of the *n*-hexane extract of the plant yielded a crystalline isolate. The isolate, mp 62°, had IR absorption bands at 2960, 2920, 2850, 1465, 720 (long chain) and 1375, 1360, 1150 cm⁻¹ (isopropyl group) [4]. An [M]⁺ ion at *m/z* 436 in the mass spectrum of the compound suggested the molecular formula C₃₁H₆₄. The formation of an ion at *m/z* 421 [M - Me]⁺ indicated the compound to be of branched chain nature carrying a methyl group as substituent. The intensity of the C_nH_{2n+1} peaks after a maximum at *n* = 4, steadily declined up to *n* = 25, followed by a strong peak at *n* = 26 (*m/z* 365). From the intense peak at *n* = 26 [M - 71]⁺, it followed that one methyl group is attached at C-3 [5]. The other significant ions at *m/z* 393 and 43 indicated the presence of a second methyl group at C-2 which is also a part of the isopropyl group. These fragmentations are depicted in structure 1. The ¹H NMR spectrum of the compound integrated for 64 protons. One of the terminal methyl groups was seen as a triplet (*J* = 4 Hz) at *δ* 0.84 and the two methyls of the isopropyl function appeared as a doublet

(*J* = 6 Hz) at *δ* 0.80. The methyl group at C-3 was also present as a doublet (*J* = 5 Hz) at *δ* 0.76. These data led us to establish the structure of this compound as 2,3-dimethylnonacosane (1).

The structure of compound 1 is in full agreement with the data now available. It has not been found previously in nature. It is interesting to note that the Solanaceae is a good source of branched hydrocarbons. Earlier they were reported from *Solanum torvum* [6] and *Duboisia myoporoides* [7]. Fractions obtained after 1 contained large amounts of oil, which was not worked up further.

EXPERIMENTAL

Mp is uncorr. The IR spectrum was recorded in KBr and the 90 MHz ¹H NMR spectrum in CDCl₃ with TMS as internal ref. TLC was carried out on silica gel G and the spots were visualized by exposure to I₂ vapour or Dragendorff spray. Plant material

